References
[1]. Dwianto, W., Inoue, M., and Norimoto, M. (1997). Fixation of deformation of wood by heat treatment. Makuzai Gakkaishi, 43 (4): 303-309.
[2]. Ito, Y., Tanahashi, M., Shigematsu, M., Shinoda, Y., and Ohta, C. (1998a). Compressive-molding of wood by high–pressure steam–treatment: I. Development of compressive molded squares from thinning. Holzforschung, 52 (2): 211-216.
[3]. Ito, Y., Tanahashi, M., Shigematsu, M., and Shinoda, Y., (1998b). Compressive-molding of wood by high–pressure steam–treatment: II. Mechanism of permanent fixation. Holzforschung, 52 (2): 217-221.
[4]. Navi, P., and Girardet, F. (2000). Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung, 54 (3): 287-293.
[5]. Navi, P., and Heger, F. (2004). Combined densification and thermo-hydro-mechanical processing of wood. MRS Bulletin, 29 (5): 332-336.
[6]. Yildiz, S., and Gümüşkaya, E. (2007). The effect of thermal modification on crystalline structure of cellulose in soft and hardwood. Building and Environment, 42(4): 62-67.
[7]. Garrote, G., Dominiguez, H., and Parajó, J.C. (1999). Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff, 57 (3): 191-202.
[8]. Bhuiyan, M.R.T., Hirai, N., and Sobue, N. (2002). Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Wood Science, 46: 431-436.
[9]. Dwianto, W., Morooka, T., and Norimoto, M. (2000). Compressive creep of wood under high temperature steam. Holzforschung, 55: 104-108.
[10]. Kubojima, Y., Ohtani, T., and Yoshikara, H. (2003). Effect of shear deflection on bending properties of compressed wood. Wood and Fiber Science, 36(2): 310-215.
[11]. Abe, K., and Yamamoto, H. (2006). Change in mechanical interaction between cellulose microfibril and matrix substance in wood cell wall induced by hygrothermal treatment. Wood Science, 52: 107-110.
[12]. Tjeerdsma, B.F., and Militz, H. (2005). Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydro thermal and dry heat-treated wood. Holz als roh-und Werkstoff, 63 (2): 102-111.
[13]. Welzbacher, C.R., Rapp, A.O., Hallel, P. and Wehsener, J. (2008). Biological and mechanical properties of densified and thermally modified Norway Spruce. In: The Second European Conference on Wood Modification. Oct 6-7th Göttingen, Germany: 20-27.
[14]. Mohebby, B., Sharifnia-Dizboni, H., and Kazemi-Najafi, S. (2009). Combined hydro-thermo-mechanical modification (CHTM) as an innovation in mechanical wood modification. The Fourth European Conference on Wood Modification, 27-29th April, Stockholm, Sewden: pp. 353-362.
[15]. Sharifnia-Dizboni, H., and Mohebby, B. (2008). Enhanced mechanical properties of poplar wood by a combined-hydro-thermo-mechanical (CHTM) modification. J. Society of Wood Science and Technology, 1 (1): 57-66.
[16]. Standard Test Methods for Specific Gravity of Wood and Wood-Based Materials Annual Book of ASTM Standard, ASTM D 2395-02, 2002.
[17]. Boonstra, M.J., Rijsdijk, J.F., Sander, C., Kegel, E., Tjeerdsma, B., Militz, H., van Acker, J., and Stevens, M. (2006). Microstructural and physical aspects of heat treated wood. II. Hardwoods. Maderas, Cienca Y Tecnologia, 8 (3): 209-217
[18]. Boonstra, M.J., and Blomberg, J. (2007). Semi-isostatic densification of heat-treated Radiate pine. Wood Science Technology, 41(7): 607-617.
[19]. Mirazei, G., Mohebby, B., and Tassoji, T. (2011). The effect of hydrothermal treatment on bond shear strength of beech wood. European Journal of Wood and Wood Products, 70 (5): 705-709.
[20]. Pizzi, A., and Mittal, K.L. 2003. Handbook of Adhesive Technology. 2nd Edition, Marcel Dekker, New York.