- Abrams, M. 2000. The Advanced space borne thermal emission and reflection radiometer (ASTER): data products for high spatial resolution imager on NASA’s Terra platform. International Journal of Remote Sensing. 21:847-859.
- Aertsen, W. Kint, V. van Orshoven, J. Özkan, K. and Muys, B. 2010. Comparison and ranking of different modeling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modeling. 221: 1119–1130.
- Ardö, J. 1992. Volume quantification of coniferous forest compartments using spectral radiance recorded by Landsat Thematic Mapper. International Journal of Remote Sensing. 13:1779-1786.
- Birth, G.S. and McVey, G.R. 1968. Measuring the color of growing turf with a reflectance spectrophotometer. Agronomy Journal. 60: 640-643.
- Brown, L. J. Chen, J. M. Leblanc, S. G. and Cihlar, J. 2000. Short wave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis. Remote Sensing of Environment. 71:16-25.
- Butera, M.K. 1986. A correlation and regression analysis of percent canopy closure versus TMS spectral response for selected forest sites in the San Juan National Forest, Colorado. IEEE Trans Geosciences Remote Sensing, 24(1):122–129.
- Cohen, W. B. and Spies, T.A. 1992. Estimating structural attributes of Douglas-fir/ western hemlock forest stand from Landsat and SPOT imagery. Remote Sensing of Environment. 41: 1-17.
- Franklin, J. 1986. Thematic mapper analysis of coniferous forest structure and composition. International Journal of Remote Sensing. 7(10): 1287-1301.
- Franklin, S. E.Wulder, M.A. and Gerylo, G.R. 2001. Texture analysis of IKONOS panchromatic data for Douglas- fir age separability in British Colombia. International Journal of Remote Sensing. 22(13): 2627-2632.
- Gao, B.G. 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment. 58:257-266.
- Gebreslasie, M.T. Ahmed, F.B. Jan, A.N and Adrdt, V. 2009. Predicting forest structural using ancillary data and ASTER satellite data. International Journal of Applied Earth Observation and Geoinformation.12(1); S23-S26.
- Hall, R.J. Skakun, R.S. Arsenault E.J. and Case, B.S. 2006. Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume. Forest Ecology and Management. 225:375-390.
- Heiskanen, J. 2006. Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data. International Journal of Remote Sensing. 27(6):1135-1158.
- Hyvonen, P. 2002. Kuvioittaisten puustotunnsten ja toimenpide-ehdotusten estimointi k-lähimmän naapurin menetelmällä Landsat TM-satelliittikuvan, vanhan inventointitiedon ja kuviotason tukianeiston avulla. Metsätieteen Aikakauskiria. 3: 363-379.
- Hyyppä, J. Hyyppä, H. Inkinen, M. Engdahl, M. Linko, S. and Zhu, Y.H. 2000 Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management. 128:109-120.
- Ingram, J.C. Dawson, T.P. and Whittaker, R.J. 2005. Mapping tropical forest structure in south– eastern Madagascar using remote sensing and artificial neural networks. Remote Sensing of Environment. 94:491-507.
- Jiang, Y. Carrow, R.N. and Duncan, R. R. 2003. Correlation analysis procedures for canopy spectral reflectance data of seashore paspalum under Traffic stress. Journal of the American Society for Horticultural Science. 13:187-208.
- Kajisa, T. Murakami, T. Mizoue, N. Top, N. and Yoshida, S. 2009. Object-based forest biomass estimation using Landsat ETM+ in Kampong Thom province, Cambodia. Journal of Forest Research. 14: 203-211.
- Kilpelainen, P. and Tokola, T. 1996. Gain to be achieved from stand delineation in Landsat TM image- based estimates of stand volume. Forest Ecology and Management. 124: 105-111.
- Khorrami, K. R. 2004. Investigation of the potential of Landsat7 ETM+ data in volume estimating of beech forest stand (case study: Sangdeh area in north of Iran). M.Sc. Thesis, University of Tehran, Faculty of Natural Resources, 80 pp.
- Lu, D. Mausel, P. Brondizio, E. and Moran, E. 2004. Relationships between forest stand parameters and landsat TM spectral response in the Brazilian Amazon Basin. Forest Ecology Management. 198:149-167.
- Mahiny, A.S. and Turner, B. J. 2003. Modeling past change in vegetation through remote and GIS: A Comparison of Networks and logistic Regression Methods, Geocomputation 2003, Southampton, UK.
- Makela, H. and Pekkarine, A. 2004. Estimation of forest stands volumes by Landsat TM imagery and stand-Level field- inventory data. Forest Ecology and Management. 196:245-255.
- Maltamo, M. Hyyppa J. and Malinen, J. 2006. A comparative study of the use of laser scanner data and field measurements in prediction of crown height in boreal forests. Scandinavian Journal of forest Research, 21:231-238.
- McRoberts, R. E. 2008. Using satellite imagery and K-nearest neighbors technique as a bridge between strategic and management forest inventories. Remote Sensing of Environment. 112: 2212-2221.
- Mohammadi, J. 2007. Investigating estimation some quantitative characteristics for presentation location models using Landsat ETM+ satellite data. M.Sc. Thesis, Gorgan University of Agriculture and Natural Sciences, 78 pp.
- Muukkonen, P. and J. Heiskanen, 2005. Estimating biomass for boreal forests using ASTER satellite data combined with stand wise forest inventory data. Remote Sensing of Environment. 99: 434-447.
- Naseri, F. 2003. Classification of forest type and estimation of their quantities parameters in arid and semi- arid region using satellite data (case study: national park of Khabr – Kerman province). PH.D. Thesis, University of Tehran, Faculty of Natural Resources, 202 pp.
- Prather, .J.W. Dodo, N.L. Dickson, B.G. Hampton, H.M. Xu, Y. Aumack, E.N. and Sisk, T.D. 2006. Landscape models to predict the influence of forest structure on Tassel-Eared squirrel Populations. Journal of Wildlife Management. 70(3): 723- 731.
- Qi, J. Chehbouni, A. Huete, A.R. Kerr, Y.H. and Sorooshian, S. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment. 48:119-126.
- Rock, B.N. Vogelmann, J.E. Williams, D.L. Vogelmann, A.F. and Hoshisaki, T. 1986. Remote detection of forest damage. Bioscience. 36: 439-445.
- Roujean, J.L. and Breon, F. M. 1995, Estimating RAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment. 51: 375-384.
- Rouse, J.W. Haas, R.H. Schell, J.A. and Deering, D.W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. In Third Earth Resources Tehnology Satellite-1 Symposium. 309-317.
- Sivanpillai, R. Smith, C.T. Srinivasan, R. Messina M.G. and Ben WU, X. 2006. Estimation of managed loblolly pine stands age and density with Landsat ETM+ data. Forest Ecology and Management. 223: 247-254.
- Steininger, M.K. 2000. Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. International Journal Remote Sensing. 21:1139–1157.
- Tokola, T. and Heikikkilä, J. 1997. Improving Satellite image based forest inventory by using a priori site quality information. Siva Fennica. 31: 67-78.
- Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment. 8:127-150.
- Walker, W. S. Kellndorfer, J.M. Lapoint, E. Hoppus M. and Westfal, J. 2007. An empirical InSAR-optical fusion approach to mapping vegetation canopy height. Remote Sensing of Environment. 109: 482-499.
- Wolter, T. P. Townsend, P.A. and Sturtevant, B.R. 2009. Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data. International Journal of Remote Sensing. 113:2019-2036.
- Zeng, D. Rademacher, J. Crow, T. Bresee, M. Le moine J. and Ryu, S. 2004. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment. 93:402-411.