[1] Avila, J.M., Gallardo, A., & Gomez-Aparicio, L. (2019). Pathogen-induced tree mortality interacts with predicted climate change to alter soil respiration and nutrient availability in Mediterranean systems. Biogeochemistry, 142, 53-71.
[2] Asadi H., Hosseini, S.M., Esmailzadeh, A., & Ahmadi, A. (2018). Investigating the flora, morphology and ecology of boxwood habitats in the protected forest of Khaybus, Mazandaran. Journal of Plant Biology, 3(8): 27-40. (In Persian)
[3] Asdian. M., Hojjati, S.M., Pourmjidian, M.R., & Faleh, A. (2012). The effect of different types of land use on the physical, chemical, and biological properties of soil in Al-Nandan Sari forest. Journal of Forest and Wood Products, 23(4), 388-377. (In Persian)
[4] Avila, J. M., Gallardo, A., Ibáñez, B., & Gómez‐Aparicio, L. (2016). Quercus suber dieback alters soil respiration and nutrient availability in Mediterranean forests. Journal of Ecology, 104(5), 1441-1452.
[5] Alef, K., & Nannipieri, P. (1995). Methods in Applied soil Microbiology and Biochemistry (No. Electronic Books154079). London San Diego: Academic Press, c1995.
[6] Ahyaei, A., & Behbahanizadeh, M. (1993). Description of soil chemical methods. Soil and Water Research Institute, 226p.
[7] Anderegg, W. R., Kane, J. M., & Anderegg, L. D. (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3(1), 30-36.
[8] Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A., Villegas, J. C., Breshears, D. D., Zou, C. B., & Huxman, T. E. (2009). Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Ciences, 106(17), 7063-7066.
[9] Barba, J., Yuste, J. C., Martínez-Vilalta, J., & Lloret, F. (2013). Drought-induced tree species replacement is reflected in the spatial variability of soil respiration in a mixed Mediterranean forest. Forest Ecology and Management, 1(306), 79-87.
[10] Barba, J., Curiel Yuste, J., Poyatos, R., Janssens, I. A., & Lloret, F. (2016). Strong resilience of soil respiration components to drought-induced die-off resulting in forest secondary succession. Oecologia, 1(182), 27-41.
[11] Bardgett, R. D., Wardle, D. A., & Yeates, G. W. (1998). Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30(14), 1867-1878.
[12] Bieganowski, A., Malý, S., Frąc, M., Tuf, I. H., Váňa, M., Brzezińska, M., Siebielec, G., Lipiec, J., & Šarapatka, B. (Eds.). (2015). Laboratory Manual. Central Institute for Supervising and Testing in Agriculture.
[13] Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-Total 1. Methods of soil analysis. Chemical and Microbiological Properties, 595-624.
[14] Berg, B., & McClaugherty, C. (2008). Plant litter: Decomposition, Humus Formation, Carbon Sequestration (No. 04; QH541. 5. S6, B4 2008.). Berlin: Springer.
[15] Bond-Lamberty, B., & Thomson, A. (2010). A global database of soil respiration data. Biogeosciences, 7(6), 1915-1926.
[16] BassiriRad, H., Constable, J. V., Lussenhop, J., Kimball, B. A., Norby, R. J., Oechel, W. C., Reich, P.B., & Silim, S. (2003). Widespread foliage δ15N depletion under elevated CO2: inferences for the nitrogen cycle. Global Change Biology, 9(11), 1582-1590.
[17] Chapman, H.D., & Pratt, P.F. (1961). Method of analysis for soils, plants and waters. University of California. Division of Agricultural Sciences. Book Review. https://doi.org/10.2136/sssaj1963.03615995002700010004x
[18] Chen, G. S., Yang, Y. S., Guo, J. F., Xie, J. S., & Yang, Z. J. (2011). Relationships between carbon allocation and partitioning of soil respiration across world mature forests. Plant Ecology, 212, 195-206.
[19] Cobb, T., Hannam, K., Kishchuk, B., Langor, D., Quideau, S., & Spence, J. (2010). Wood-feeding beetles and soil nutrient cycling in burned forests: implications of post-fire salvage logging. Agricultural and Forest Entomology, 12(1), 9.
[20] Dietze, M. C., & Matthes, J. H. (2014). A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems. Ecology Letters, 17(11), 1418-1426.
[21] Edburg, S. L., Hicke, J. A., Brooks, P. D., Pendall, E. G., Ewers, B. E., Norton, U., ... & Meddens, A. J. (2012). Cascading impacts of bark beetle‐caused tree mortality on coupled biogeophysical and biogeochemical processes. Frontiers in Ecology and the Environment, 10(8), 416-424.
[22] Fürstenberg-Hägg, J., Zagrobelny, M., & Bak, S. (2013). Plant defense against insect herbivores. International Journal of Molecular Sciences, 14(5), 10242-10297.
[23] Galmán, A., Abdala‐Roberts, L., Zhang, S., Berny‐Mier y Teran, J. C., Rasmann, S., & Moreira, X. (2018). A global analysis of elevational gradients in leaf herbivory and its underlying drivers: Effects of plant growth form, leaf habit and climatic correlates. Journal of Ecology, 106(1), 413-421.
[24] Ghazanshahi, J. (2006). Soil and plant analysis. Homa Publications, 292p.
[25] García-Angulo, D., Hereş, A. M., Fernández-López, M., Flores, O., Sanz, M. J., Rey, A., ... & Yuste, J. C. (2020). Holm oak decline and mortality exacerbates drought effects on soil biogeochemical cycling and soil microbial communities across a climatic gradient. Soil Biology and Biochemistry, 149, 107921.
[26] Hamilton III, E. W., & Frank, D. A. (2001). Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 82(9), 2397-2402.
[27] Holland, J. N. (1995). Effects of above-ground herbivory on soil microbial biomass in conventional and no-tillage agroecosystems. Applied Soil Ecology, 2(4), 275-279.
[28] Hunter, M. D., Reynolds, B. C., Hall, M. C., Frost, C. J., & Ohgushi, T. (2012). Effects of herbivores on ecosystem processes: the role of trait-mediated indirect effects. In Trait-mediated indirect interactions, edited by T. Ohgushi, O Schmitz, R.D. Holt: Cambridge University Press. 339-370.
[29] Isaac, R. A., & Johnson, W. C. (1975). Collaborative study of wet and dry ashing techniques for the elemental analysis of plant tissue by atomic absorption spectrophotometry. Journal of the Association of Official Analytical Chemists, 58(3): 436-440
[30] Hicke, J. A., Johnson, M. C., Hayes, J. L., & Preisler, H. K. (2012). Effects of bark beetle-caused tree mortality on wildfire. Forest Ecology and Management, 271, 81-90.
[31] Jafari Haqiqi M. (2003). Methods of soil analysis (sampling and important physical and chemical analyses) Nadayi Zahi Publications, 236 p.
[32] Jalili, A., & Jamzad, Z. (1999). Red data book of Iran: A preliminary survey of endemic, rare and endangered plant species in Iran, Research Institute of Forests and Rangelands Press, Problems of Ecology, 6(5), 520-524.
[33] Koch, Y., & Tavakoli, M. (2017). Investigating the activity of soil and microbial organisms under the canopy of pure and mixed broadleaf stands of Caspian forests. Iranian Journal of Forest, 10, 89-100. (In Persian)
[34] Khabazi, F., & Esmailzadeh, O. (2020). Classification of plant communities of (Buxus hyrcana Pajark) in Cheshme Belbel forest (Bandargaz, Golestan). Forest Research and Development, 6(3), 491-503.
[35] Kooch, Y., Parsapour, M. K., Nouraei, A., Kartalaei, Z. M., Wu, D., Gómez-Brandón, M., & Lucas-Borja, M. E. (2023). The effect of silvicultural systems on soil function depends on bedrock geology and altitude. Journal of Environmental Management, 345, 118657.
[36] Kooijman, A. M., Weiler, H. A., Cusell, C., Anders, N., Meng, X., Seijmonsbergen, A.C., & Cammeraat, L. H. (2019). Litter quality and microtopography as key drivers to topsoil properties and understorey plant diversity in ancient broadleaved forests on decalcified marl. Science of the Total Environment, 684, 113-125.
[37] Kristensen, J. A., Metcalfe, D. B., & Rousk, J. (2018). The biogeochemical consequences of litter transformation by insect herbivory in the Subarctic: a microcosm simulation experiment. Biogeochemistry, 138: 323-336.
[38] Kristensen, J. A., Michelsen, A., & Metcalfe, D. B. (2020). Background insect herbivory increases with local elevation but makes minor contribution to element cycling along natural gradients in the Subarctic. Ecology and Evolution, 10(20), 11684-11698.
[39] Krüger, E. O. (2008). Glyphodes perspectalis (Walker, 1859) -new for the European fauna (Lepidoptera: Crambidae). Entomologische Zeitschrift mit Insekten-Börse, 118(2), 81-83.
[40] Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., ... & Safranyik, L. (2008). Mountain pine beetle and forest carbon feedback to climate change. Nature, 452(7190): 987-990.
[41] Kooch, Y., Ghorbanzadeh, N., Wirth, S., Novara, A., & Piri, A. S. (2021). Soil functional indicators in a mountain forest-rangeland mosaic of northern Iran. Ecological Indicators, 126: 107-672.
[42] Kooch, Y., & Hosseini, S.M. (2015). Forest Soil Ecology (Concepts and Algorithms). University Jihad Publications, Mazandaran Branch.
[43] Langenbruch, C., Helfrich, M., & Flessa, H. (2012). Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant and Soil, 352: 389-403.
[44] le Mellec, A., & Michalzik, B. (2008). Impact of a pine lappet (Dendrolimus pini) mass outbreak on C and N fluxes to the forest floor and soil microbial properties in a Scots pine forest in Germany. Canadian Journal of Forest Research, 38(7), 1829-1841.
[45] Leuthardt, F. L., & Baur, B. (2013). Oviposition preference and larval development of the invasive moth C ydalima perspectalis on five E uropean box‐tree varieties. Journal of Applied Entomology, 137(6), 437-444.
[46] Li, D., Niu, S., & Luo, Y. (2012). Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta‐analysis. New Phytologist, 195(1), 172-181.
[47] Louda, S. M., Keeler, K. H., & Holt, R. D. (1990). Herbivore influences on plant performance and competitive interactions. Academic Press, New York. pp. 413-444.
[48] Leal, F., Aburto, F., Aguilera, N., Echeverría, C., & Gatica-Saavedra, P. (2023). Forest degradation modifies litter production, quality, and decomposition dynamics in Southern temperate forests. Frontiers in Soil Science, 3, 111-1694.
[49] Manteghi, N. (2011). Description of laboratory methods and investigations on soil and water samples - Publication No. Soil and Water Research Institute.168p.
[50] Masto, R. E., Chhonkar, P. K., Singh, D., & Patra, A.K. (2007). Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol. Agriculture, Ecosystems & Environment, 118(1-4), 130-142.
[51] Matsiakh, I., Kramarets, V., & Mamadashvili, G. (2018). Box tree moth Cydalima perspectalis as a threat to the native populations of Buxus colchica in Republic of Georgia. Journal of the Entomological Research Society, 20(2), 29-42.
[52] Morehouse, K., Johns, T., Kaye, J., & Kaye, M. (2008). Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. Forest Ecology and Management, 255(7), 2698-2708.
[53] Mafi, S., Berari, H., Brimani-Verandi, H., Brimani-Verandi, M.A., & Brari, M. (2018). An analysis of the consequences of boxwood moth damage in Hyrkani forests, Extension Journal of Forest Conservation and Exploitation Hyrcanian, 1(2): 12-3.
[54] Mylliemngap, W., Nath, D., & Barik, S. K. (2016). Changes in vegetation and nitrogen mineralization during recovery of a montane subtropical broadleaved forest in North-eastern India following anthropogenic disturbance. Ecological Research, 31, 21-38.
[55] Matthes, J. H., Lang, A. K., Jevon, F. V., & Russell, S. J. (2018). Tree stress and mortality from emerald ash borer does not systematically alter short-term soil carbon flux in a mixed northeastern US forest. Forests, 9(1), 37.
[56] Neziri, I. R. (2020). Effect of Western Spruce Budworm Herbivory on Forest soils and Litter Decomposition in central Washington. Central Washington University. https://digitalcommons.cwu.edu/etd/1389
[57] Nilsson, M. C., Wardle, D. A., & Dahlberg, A. (1999). Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos, 16-26.
[58] Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259(5), 857-866.
[59] Olsen, S.R., & dean, L. (1965). Methods of soil Analysis. American Society of Agronomic, 1044-1047.
[60] Owen, J. S., Wang, M. K., Wang, C. H., King, H. B., & Sun, H. L. (2003). Net N mineralization and nitrification rates in a forested ecosystem in northeastern Taiwan. Forest Ecology and Management, 176(1-3), 519-530.
[61] Page, A.L., Miller, R.H., & Keeney, D.R. (1982). Methods of soil analysis, chemical and microbiological properties. American society of Agronomy, Inc. soil Science of American. 220 p.
[62] Page, L. M., & Cameron, A. D. (2006). Regeneration dynamics of Sitka spruce in artificially created forest gaps. Forest Ecology and Management, 221(1-3), 260-266.
[63] Paterson, E., & Sim, A. (2000). Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra. Journal of Experimental Botany. 1(51): 1449–1457.
[64] Piazza, M. V., Mazía, N., Kitzberger, T., & Chaneton, E. J. (2021). Chronic insect herbivores accelerate litter decomposition and nutrient recycling rates along an environmental/herbivory gradient in northern Patagonia. Forest Ecology and Management, (479), 118-534.
[65] Pojasok, T., & Kay, B. D. (1990). Assessment of a Combination of Wet Sieving and Turbidimetry to Characterize the Structural Stability of Moist Aggregates. Canadian Journal of Soil Science, 70(1), 33-42.
[66] Paudel, E., Dossa, G.G., de Blécourt, M., Beckschäfer, P., Xu, J. & Harrison, R.D. (2015). Quantifying the factors affecting leaf litter decomposition across a tropical forest disturbance gradient. Ecosphere, 6(12), 1-20.
[67] Rodríguez, A., Durán, J., Yuste, J.C., Valladares, F. & Rey, A. (2023). The effect of tree decline over soil water content largely controls soil respiration dynamics in a Mediterranean woodland. Agricultural and Forest Meteorology, 1(333), 109-398.
[68] Soleimanipour, S., & Esmailzad, O. (2014). Introduction of flora, morphology and chorology of boxwood (Buxus hyrcana) habitats in Frame Sari forests. Journal of Taxonomy and Biosystematics, 7(23), 39-56.
[69] Valladares, F. & Guzmán, B. (2006). Canopy structure and spatial heterogeneity of understory light in an abandoned Holm oak woodland. Annals of Forest Science, 63(7), 749-761.
[70] Vitousek, P. M., Hedin, L. O., Matson, P. A., Fownes, J. H., & Neff, J. (1998). Within-system element cycles, input-output budgets, and nutrient limitation. Successes, Limitations, and Frontiers in Ecosystem Science, 432-451.
[71] Yang K., Zhu J., Zhang, M., Yan Q., & Sun O.J. (2010). Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. Journal of Plant Ecology, 3(3), 175-182.
[72] Zangy, E., Kigel, J., Cohen, S., Moshe, Y., Ashkenazi, M., Fragman-Sapir, O., & Osem, Y. (2021). Understory plant diversity under variable overstory cover in Mediterranean forests at different spatial scales. Forest Ecology and Management, 1(494), 119-319.
[73] Zare, M.A. (2010). Data analysis in natural resources research with SPSS software. Tehran University Jihad Publications, 310p. (In Persian)