تأثیر پیش‌تیمار قلیایی و آب جوش بر نم‌پذیری و خواص ساختاری بیوکامپوزیت آرد تنۀ نخل خرما- نشاستۀ گرمانرم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه علوم و صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانشجوی دکتری، گروه علوم و صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج، ایران

3 استاد گروه علوم و صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج، ایران

4 دانشیار، گروه علوم و صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

در این پژوهش با توجه به اهمیت چندسازۀ کامپوزیتی زیست‌سازگار، امکان ساخت و بهبود عملکرد یک کامپوزیت طبیعی برپایۀ نشاستۀ گرمانرم و آرد الیاف تنۀ نخل خرما بررسی شد. برای تولید این کامپوزیت، از الیاف استحصال‌شدۀ تنۀ نخل خرما و پلیمر نشاستۀ گرمانرم به نسبت برابر (50 به 50) استفاده شد. برای اصلاح سطح الیاف از هیدروکسید سدیم 1 درصد و آب جوش استفاده شد. آزمون‌های جذب آب، واکشیدگی ابعاد، دانسیته و رطوبت تعادل برای بررسی خواص فیزیکی انجام گرفت. از آزمون‌های زاویۀ تماس دینامیکی، پراش پرتو ایکس (XRD) و طیف‌سنجی مادون قرمز (FTIR) به‌ترتیب برای بررسی خواص نم‌پذیری سطح، تغییرات شیمیایی و ساختاری بیوکامپوزیت استفاده شد. نتایج نشان داد که هر دو پیش‌تیمار قلیایی و آب جوش با ایجاد تغییرات شیمیایی و مورفولوژیکی در ساختار بیوکامپوزیت‌ها، سبب ایجاد ارتباط بهتر فاز تقویت‌کننده با ماتریکس پلیمری می‌شوند. این موضوع موجب افزایش دانسیته و بهبود خواص کاربردی فراوردۀ مذکور شد. پیش‌تیمار قلیایی سبب افزایش نم‌پذیری و جذب آب بیوکامپوزیت نشاسته شد. اما پیش‌تیمار آب جوش به‌دلیل بهبود کریستالیته و تخریب همی‌سلولز در ایجاد ثبات ابعاد و کاهش نم‌پذیری کارامدتر بود. در صورتی که تولید کامپوزیت زیست‌سازگار بادوام و کم‌هزینه همراه با خواص فیزیکی یادشده مدنظر باشد، استفاده از پیش‌تیمار آب جوش توصیه می‌شود.

کلمات کلیدی: آرد تنه‌نخل‌خرما ، نم‌پذیری، پیش‌تیمار آب جوش و قلیایی، بیوکامپوزیت، نشاسته گرمانرم، کریستالیته

کلیدواژه‌ها


عنوان مقاله [English]

Influence of alkaline and boiling water pretreatment on the structural and surface wettability of biocomposite fabricated of pretreated palm fiber-thermoplastic starch

نویسندگان [English]

  • Amirhossein Sadeghefard 1
  • Akbar Mastouri 2
  • Mohammad Mehdi Faezipour 3
  • majid azizi 3
  • hamid ZarehHossien Abadi 4
1 MSc., Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran
2 Ph.D., Student, Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran
3 Prof., Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran
4 Assoc., Prof., Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran
چکیده [English]

In this study, considering the importance of eco-friendly composite materials, the feasibility to produce a biocomposite by using pretreated palm fiber and thermoplastic starch are investigated. In order to produce this composite, the extracted fibers of palm tree and thermoplastic starch polymer in equal ratio (50 to 50) were used. Pre-treatment by 1% NaOH and boiling water were used to modify the fiber surface. Water absorption, dimensional swelling, equilibrium moisture content and density were measured to investigate physical properties. Dynamic contact angle tests, XRD, and FTIR spectroscopy were used to evaluate the wettability and chemical-structural changes in polymeric structure. The results showed that both alkali pretreatment and boiling water modification of the fiber improve the performance of bicomposite by creating morphological and chemical changes on the fiber surface leading to a better linking with polymeric matrix. Hot water pretreatment was more efficient in improving the crystallinity and hemicellulose degradation to create dimensional stability and reduced wettability. Alkali pre-treatment increased the wettability and water absorption of thermoplastic biocomposite. Boiling water pretreatment is recommended if the production of durable and low cost biocompatible composites with high physical properties is considered.

کلیدواژه‌ها [English]

  • Palm tree fiber
  • alkaline and boiling water pre-treatment
  • crystallinity
  • wettability
  • starch bio composite
[1]. Kumar, S. (1994). Chemical modification of wood. Wood Fiber Science, 26:270–80.
[2]. Siracusa, V., Rocculi, P., Romani, S., and Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: a review. Trend in Food Science and Technology, 19: 634-643.
[3]. De-Fariasa, J. G. G., Cavalcantea, R. C., Canabarroa, B. R., Vianab, H. M., Scholzc, S., and Simãoa, R. A. (2017). Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites. Carbohydrate Polymers, 165:429–436.
[4]. Bledzki, A.K., and Gassan, J. (1999). Composites Reinforced with Cellulose Based Fibres. Progress in Polymer Science, 24: 221-274.
[5]. Tserki, V., Zafeiropoulos, N.E., Simon, F., and Panayiotou, C. (2005). A study of the effect of acetylation and propionylation surface treatments on natural fibers. Compos Part A: Apply Science Manufacturing, 36(8):1110–8.
[6]. Ghafarzadeh, H., and A. Ghazanfari. )2010(. Comparing four methods for purifying date fibers for reinforcement purposes in bio composites. Journal of Separation Science and Engineering, 2: 105-114.
[7]. Costa Santos, E.B., Morenoa, C.G.,  Pereira Barrosa, J.J., de Mouraa, D.A., Fima, F.D.C., Riesc, A., Wellena, R.M.R., da Silvaa. L.B. (2018). Effect of alkaline and hot water treatments on the structure and morphology of piassava fibers. Materials Research, 21(2): e20170365.
[8]. Alawar A., Ahmad. M, H., and AL-Khalifa, K. (2009). Characterization of treated date palm tree fiber as composite reinforcement. Composites: Part B, 40:601–606.
[9]. Mohanty, A.K., Khan, M.A., and Hinrichsen, G. (2000). Surface modification of jute and its influence on performance of biodegradable jute-fabric/biopolymer composites. Composites Science Technology, 60:1115–24.
[10]. Mwaikambo, L.Y., and Ansell, M.P. (2000). The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angew Makromol Chemistry, 272:108–16.
[11]. Sreekala, M.S., and Thomas, S. (2003). Effect of fiber surface modification on water-sorption characteristics of oil palm fibers. Composites Science Technology, 63:861–869.
[12]. Gholami, M., Ahmadi, M.S., Tavanaie, M.A., and Mehrizi, M. Kh. (2017). Mechanical properties of date palm fiber reinforced polymer composites: A Review. Polymerization, 7(1): 82-93.
[13]. AL Khanbashi, A., Al Kaabi, K., and Hammami, A. (2005). Data palm fiber as polymeric matrix reinforcement fiber characterization. Polymer Composites, 26: 604-613.
[14]. Segal, L., Creely, J., Martin, A., and Conrad, C. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10):786–794.
[15]. Ghali, L., Msahli, S., Zidi M., and Sakli, F. (2009). Effect of pre-treatment of Luffa fibers on the structural properties.  Materials Letters, 63:61–63.
[16]. George, J., Sreekala, M.S., and Thomas, S. (2001). A review on interface modification and characterization of natural fiber reinforced plastic composites.  Polymer Engineering Science, 41(9):1471–556.
[17]. Pelaez-Samaniego, M. R., Yadama, V., Lowell, E., and Herrera, R.E. (2013(. A review of wood thermal pretreatments to improve wood composite properties. Wood Science Technology, 47:1285–1319.
[18]. Young, R.A. (1976). Wettability of wood pulp fibers: applicability of methodology. Wood Fiber Science, 8(2):120–128.
[19]. Chowdhury, M.N.K., Beg, M.D.H., Khan, M.R., and Mina, M.F. (2013). Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment. Cellulose, 20(3):1477–149.
[20]. Chen, H., Zhang, W., Wang, X., Wang, H., Wu, Y., Zhong, T., and Fei, B. (2018). Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. Journal of Wood Science, 64(4): 398–405.
[21]. Özgenç, O., Durmaz, S., Boyaci, I.H., and Eksi-Kocak, H., 2017. Determination of chemical changes in heat treated wood using ATR-FTIR and FT Raman spectrometry. Spec trochimica Acta Part A: Molecular and Bimolecular Spectroscopy, 171:395–400.
[22]. Sikora, A., Kacik, F., Gaff, M., Vondrová, V., Buben, T., and Kubovsky, I., 2018. Impact of thermal modification on color and chemical changes of spruce and oak wood. Journal of wood Science, 64: 406–416.
[23]. Tarmian, A., and Mastouri, A. (2018). Water-repellent efficiency of thermally modified wood as affected by its permeability. Journal of Forest Research, 29(30): 859–867.
[24]. Islam, M.S., Hamdan, S., Jusoh, I., Rahman, M.R., and Ahmed, A.S. (2012). The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites. Materials & Design, 33: 419–424.
[25]. Okon, K.E., Lin, F., Chen, Y., and Huang, B. (2017). Effect of silicone oil heat treatment on the chemical composition, cellulose crystalline structure and contact angle of Chinese parasol wood. Carbohydrate Polymers, 164:179–185.
[26]. Pandey, K.K., and Pitman, A.J. (2003). FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation, 52: 151-160.
[27]. Kotilainen, R.A., Toivanen, T.J., and Alèn, R.J. (2000). FTIR monitoring of chemical changes in soft-wood during heating. Journal Wood Chemistry Technology, 20(3):307–320.
[28]. Nuopponen, M.,Wikberg, H., Vuorinen, T., Maunu, S.L., Jämsä, S., and Viitaniemi, P. (2003). Heat treated softwood exposed to weathering. Journal Apply Polymer Science, 91:2128–2134.
[29]. Hakkou, M., Pètrissans, M., Zoulalian, A., and Gèrardin, P. (2005). Investigation of wood wettability changes during heat treatment on the basis of chemicals analysis. Polymer Degradation Stability, 89:1–5.
[30]. Zhang, T., Guo, M., Cheng, L., and Li, X. (2015). Investigations on the structure and properties of palm leaf sheath fiber. Cellulose, 22(2):1039-1051.
[31]. Akerholm, M., Hinterstoisser, B., and Salmen, L. (2004). Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydrate Research, 339: 569–578.