اثر کاربرد مایکوریزا بر برخی صفات فیزیولوژیک و بیوشیمیایی نهال‌های بلوط ایرانی (Quercus brantii) تحت شرایط تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم باغبانی، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه اراک، اراک، ایران

2 دانش‌آموختۀ کارشناسی ارشد، گروه علوم باغبانی، دانشکدۀ کشاورزی و منابع طبیعی، دانشگاه اراک، اراک، ایران

چکیده

تنش خشکی از محدودکننده‌ترین عوامل محیطی رشد گیاهان چوبی و غیرچوبی است. به‌ویژه در مناطق خشک و نیمه‌خشک، استقرار، رشد و نمو درختان به‌ویژه نهال‌های جوان، به‌شدت تحت تأثیر کمبود آب است. از این‌رو به‌منظور مطالعۀ اثر تلقیح قارچ آرباسکولار مایکوریزا بر مقاومت به خشکی نهال‌های بلوط ایرانی، آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرا شد. تیمارها شامل اعمال تنش خشکی در دو سطح (آبیاری منظم و آبیاری نکردن) و قارچ مایکوریزا در دو سطح (تلقیح یا تلقیح نکردن با Funneliformis mosseae) بود. تحت تنش خشکی همۀ شاخص‌های رشد نهال‌ها از جمله محتوای آب نسبی، محتوای رنگیزه‌های فتوسنتزی، درصد مادۀ خشک و شاخص پایداری غشا کاهش یافت. تلقیح قارچ آرباسکولار مایکوریزا به‌طور معنی‌داری سبب بهبود درصد وزن خشک ریشه (1/4 درصد)، محتوای کلروفیل b (1/37 درصد)، محتوای فنول کل (100 درصد)، محتوای فلاونوئید کل (53 درصد) و ظرفیت آنتی‌اکسیدانی کل (4 درصد) نسبت به گیاهان تلقیح‌نشده شد. همچنین تلقیح مایکوریزا سبب افزایش محتوای آب نسبی، شاخص پایداری غشا، درصد وزن خشک اندام‌های هوایی، محتوای کلروفیل a و کل و محتوای کاروتنوئیدها و کاهش محتوای پرولین برگ نهال‌های بلوط ایرانی چه در رژیم آبیاری منظم و چه در شرایط تنش خشکی شد. در مجموع، نتایج نشان داد که قارچ آرباسکولار مایکوریزا موجب بهبود شاخص‌های رشدی نهال‌های بلوط ایرانی از طریق بهبود روابط آبی گیاه و ترکیبات آنتی‌اکسیدان شد. از این‌رو تلقیح نهال‌های بلوط ایرانی قبل از کشت و استقرار آنها در محل اصلی پیشنهاد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of mycorrhiza application on some physiological and biochemical characteristics of Quercus brantii saplings under drought stress conditions

نویسندگان [English]

  • Alireza Khaleghi 1
  • Payam Puryafar 2
1 Assist., Prof., Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, I.R. Iran.
2 Former M.Sc. Student, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Arak, I.R. Iran.
چکیده [English]

Drought is one of the most important environmental factor limiting the growth of woody and non woody plants. Especially, in arid and semiarid regions, establishment, growth and development of trees, especially young seedlings are severely affected by water scarcity. So, in order to study the effect of mycorrhizal fungi inoculation on drought resistance of Quercus brantii Lindl. saplings, a factorial experiment was performed in completely randomized design with three replications. Treatments were included drought stress at two levels (well-watered and withholding water) and mycorrhiza at two levels (inoculation and/or uninoculated with Funneliformis moseae). Under drought stress, all growth indices including relative water content, photosynthetic pigments content, dry matter percentage and membrane stability index decreased. Inoculation of arbuscular mycorrhizal fungi significantly improved root dry matter percentage (4/1%), chlorophyll b content (37/1%), total phenol content (100%), total flavonoid content (53%) and total antioxidant capacity (4%) compared with the uninoculated seedlings. Mycorrhiza inoculation also increased relative water content, membrane stability index, shoot dry weight percentage, chlorophyll a and total content and carotenoids content and decreased leaf proline content of Iranian oak saplings under both regular irrigation and drought stress conditions. Overall, the results showed that mycorrhiza arbuscular fungi improved growth indices of Iranian oak saplings by improving plant water relations and antioxidant compounds. Therefore, inoculation of Iranian oak saplings before planting and their establishment in the main site is recommended.

کلیدواژه‌ها [English]

  • Antioxidant
  • Arbuscular mycorrhiza
  • Iranian oak
  • Symbiosis
[1]. Naseri Karimvand, S., Poursartip, L., Moradi, M., and Susani, J. (2017). Comparing the impact off climate variables on healthy and declined stands off Persian oak (Quercus branttii Lindl.) in the “Khorram Abad”. Iranian Journal of Wood and Paper Industries, 7 (4): 591-600.
[2]. Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B.E., Salami, S.A., and Babalar M. (2019). Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports, 9: 1-12.
[3]. Wu, Q.S., Srivastava, A.K., and Zou, Y.N. (2013). AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae, 164: 77-87.
[4]. Frosi, G., Barros, V.A., Oliveira, M.T., Santos, M., Ramos, D.G., Maia, L.C., and Santos M.G. (2016). Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest. Plant Physiology, 207: 84-93.
[5]. Abbaspour, H., Saeid-Sar, S., and Afshari, H. (2011). Improving drought tolerance of Pistacia vera L. seedlings by arbuscular mycorrhiza under greenhouse condition. Medicinal Plants Research, 5(32): 7065-7072.
[6]. Yooyongwech, S., Phaukinsang, N., Cha-um, S., and Supaibulwatana, K. (2013). Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation, 69: 285-293.
[7]. Giovannetti, H.W., and Mosse, B. (1980). An evaluation technique for measuring vesicular arbescular mycorrhiza infection in roots. New Phytologist, 84: 489-500.
[8]. Lichtenthaler, H.K., and Wellburnt, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591-592.
[9]. Bates, L.S., Waldren, R.P., and Teare, L.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207.
[10]. Singleton, V.L., and Rossi, J.A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16: 144-158.
[11]. Djeridane, A., Yousfi, M., and Nadjemi, B. (2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food chemistry, 97: 654-660.
[12]. Akowuah, G.A., Ismail, Z., Norhayati, I., and Sadikun, A. (2005). The effects of different extraction solvents of varying polarities on polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chemistry, 93: 311-317.
[13]. Timonen, S., and Kauppinen, P. (2008). Mycorrhizal colonisation patterns of Tilia trees in street, nursery and forest habitats in southern Finland. Urban Forestry & Urban Greening, 7 (4): 265-276.
[14]. Martinova, V., van Geel, M., Lievens, B., and Honnay, O. (2016). Strong differences in Quercus robur-associated ectomycorrhizal fungal communities along a forest-city soil sealing gradient. Fungal Ecology, 20: 88-96.
[15]. Yang, F., and Miao, L.F. (2010). Adaptive responses to progressive drought stress in two poplar species originating from different altitudes. Silva Fennica, 44(1): 23-37.
[16]. Goss, M.J., Carvalho, M., and Brito, I. (2017). Functional Diversity of Mycorrhiza and Sustainable Agriculture: Management to Overcome Biotic and Abiotic Stresses. Academic press, London.
[17]. Fouad, M.O., Essahibi, A., Benhiba, L., and Qaddoury, A. (2014). Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Spanish Journal of Agricultural Research, 12(3): 763-771.
[18]. Chang, W.C., Kim, S.C., Hwang, S.S., Choi, B.K., and Kim, S.K. (2002). Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science, 163: 1161-1168.
[19]. Tattini, M., Galardi, C., Pinelli, P., Massari, R., Remorini, D., and Agati, G. (2004). Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytologist, 163: 547-561.
[20]. Morello, J.R., Romero, M.P., Ramo, T., and Motilva, M.J. )2005(. Evaluation of L-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Science, 168: 65-72.
[21]. Ceccarelli, N., Curadi, M., Martelloni, L., Sbrana, C., Picciarelli, P., and Giovannetti, M. (2010).Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant and Soil, 335: 311 -323.
[22]. Tyagi, J., Varma, A., and Pudake, R.N. (2017). Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. European Journal of Soil Biology, 81: 1-10.
[23]. Seki, M. Umezawa, T., Urano, K., and Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Plant Biology, 10: 296-302.
[24]. Wu, Q.S., Xia, R.X., and Zou, Y.N., (2006). Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. Plant Physiology, 163: 1101–1110