[1]. Naseri Karimvand, S., Poursartip, L., Moradi, M., and Susani, J. (2017). Comparing the impact off climate variables on healthy and declined stands off Persian oak (Quercus branttii Lindl.) in the “Khorram Abad”. Iranian Journal of Wood and Paper Industries, 7 (4): 591-600.
[2]. Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B.E., Salami, S.A., and Babalar M. (2019). Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports, 9: 1-12.
[3]. Wu, Q.S., Srivastava, A.K., and Zou, Y.N. (2013). AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae, 164: 77-87.
[4]. Frosi, G., Barros, V.A., Oliveira, M.T., Santos, M., Ramos, D.G., Maia, L.C., and Santos M.G. (2016). Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest. Plant Physiology, 207: 84-93.
[5]. Abbaspour, H., Saeid-Sar, S., and Afshari, H. (2011). Improving drought tolerance of Pistacia vera L. seedlings by arbuscular mycorrhiza under greenhouse condition. Medicinal Plants Research, 5(32): 7065-7072.
[6]. Yooyongwech, S., Phaukinsang, N., Cha-um, S., and Supaibulwatana, K. (2013). Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation, 69: 285-293.
[7]. Giovannetti, H.W., and Mosse, B. (1980). An evaluation technique for measuring vesicular arbescular mycorrhiza infection in roots. New Phytologist, 84: 489-500.
[8]. Lichtenthaler, H.K., and Wellburnt, A.R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591-592.
[9]. Bates, L.S., Waldren, R.P., and Teare, L.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207.
[10]. Singleton, V.L., and Rossi, J.A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16: 144-158.
[11]. Djeridane, A., Yousfi, M., and Nadjemi, B. (2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food chemistry, 97: 654-660.
[12]. Akowuah, G.A., Ismail, Z., Norhayati, I., and Sadikun, A. (2005). The effects of different extraction solvents of varying polarities on polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chemistry, 93: 311-317.
[13]. Timonen, S., and Kauppinen, P. (2008). Mycorrhizal colonisation patterns of Tilia trees in street, nursery and forest habitats in southern Finland. Urban Forestry & Urban Greening, 7 (4): 265-276.
[14]. Martinova, V., van Geel, M., Lievens, B., and Honnay, O. (2016). Strong differences in Quercus robur-associated ectomycorrhizal fungal communities along a forest-city soil sealing gradient. Fungal Ecology, 20: 88-96.
[15]. Yang, F., and Miao, L.F. (2010). Adaptive responses to progressive drought stress in two poplar species originating from different altitudes. Silva Fennica, 44(1): 23-37.
[16]. Goss, M.J., Carvalho, M., and Brito, I. (2017). Functional Diversity of Mycorrhiza and Sustainable Agriculture: Management to Overcome Biotic and Abiotic Stresses. Academic press, London.
[17]. Fouad, M.O., Essahibi, A., Benhiba, L., and Qaddoury, A. (2014). Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Spanish Journal of Agricultural Research, 12(3): 763-771.
[18]. Chang, W.C., Kim, S.C., Hwang, S.S., Choi, B.K., and Kim, S.K. (2002). Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science, 163: 1161-1168.
[19]. Tattini, M., Galardi, C., Pinelli, P., Massari, R., Remorini, D., and Agati, G. (2004). Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytologist, 163: 547-561.
[20]. Morello, J.R., Romero, M.P., Ramo, T., and Motilva, M.J. )2005(. Evaluation of L-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Science, 168: 65-72.
[21]. Ceccarelli, N., Curadi, M., Martelloni, L., Sbrana, C., Picciarelli, P., and Giovannetti, M. (2010).Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant and Soil, 335: 311 -323.
[22]. Tyagi, J., Varma, A., and Pudake, R.N. (2017). Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. European Journal of Soil Biology, 81: 1-10.
[23]. Seki, M. Umezawa, T., Urano, K., and Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Plant Biology, 10: 296-302.
[24]. Wu, Q.S., Xia, R.X., and Zou, Y.N., (2006). Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. Plant Physiology, 163: 1101–1110