[1]. Koomen, E., Stillwell J., Bakema A., and Scholten H.J. (2007). Modelling Land-Use Change, Progress and Applications, Springer, Dordrecht, the Netherlands.
[2]. Niyazi, Y., Ekhtesasi, M., and Hosseini, Z. (2010). Comparison of two method classification of maximum likelihood and artificial neural network to extract the land use map (Case Study: catchment of Ilam dam). Geography and Development Journal, 20: 132-119.
[3]. Ademola N., Braimoh K., and Onishi T. (2007). Spatial determinants of urban land use change in Lagos. Land Use Policy, 24(2): 502–515.
[4]. Ashraf, M.D., and Yasushi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography, 29: 390–401.
[5]. Alizadeh Rabi'i, A. (2008). Remot Sensing (Principles and Application), Publications of SAMT, Tehran.
[6]. Lu, D., Mausel, P., Brondizio, E., and Moran, E. (2004). Change detection techniques. International Journal of RemoteSensing, 25(12): 2365-2401.
[7]. Kamyab, H., Salman Mahini, A., Hosseini, S.M., and Gholamalifard, M. (2011). Application of neural network in modeling urban development (Case Study: Gorgan City). Human Geographical Journal, 76: 113-99.
[8]. Pijanowski B., Pithadia S., Shellito B.y., and Alexandridis K. (2005). Calibrating a neuralnetwork-based urban change model for two metropolitan areas of the UpperMidwest of the United States. International Journal of Geographical InformationScience, 19(2): 197–215.
[9]. Mas J.F., Puig H., Palacio J.L., and Sosa-Lopez A. (2004). Modelling deforestation using GIS and artificial neural networks. Environmental Modelling and Software, 19(5): 461–471.
[10]. Pontius R., and Malanson J. (2005). Comparison of the structure and accuracy of twoland change models. International Journal of Geographical Information Science, 19(2): 243–265.
[11]. Van Vliet, J., White, R., and Dragicevic, S. (2009). Modeling urban growth using a variablegrid cellular automaton. Computers Environment and Urban Systems, 33(1): 35–43.
[12]. Pijanowski, B., Brown, D., Shellito, B., and Manik, G. (2002). Using Neural networks and GIS to forecast land use changes: a land transformation model. Computers, Environment and Urban Systems, 26(6): 553-575.
[13]. Vahidnia, M.H., Aleshikh, A.A., and Varshosaz, M. (2010). The assessment of multilayer perceptron networks with the existing model interpolation. Spatial Information Technology Engineering Journal, 1(1): 95-116.
[14]. Chau, K.W., and Cheng, C.T. (2002). Real-time prediction of water stage with artificial neural network approach. Lecture Notes in Artificial Intelligence, 2557: P.715.
[15]. Foody, G.M. (2000). Mapping land cover from remotely sensed data with a softed feed forwardneural network classification. Journal of Intelligent and Robotic Systems, 29(4) 443-449.
[16]. Kamyab, H., Salman Mahini, A., Hosseini, S. M., and Gholamalifard, M. (2010). Adopting approach based on information using logistic regression modeling urban development Gorgan city. Journal of Ecology, 36 (54): 96-89.
[17]. Zeyaeian, P., Shakiba, A., Matkan, A.A., and Sadeghi, A. (2009). Remote sensing (RS), geographic information systems (GIS) and cellular automata model (CA) as a tool for simulating urban land use change (case study: the Shahre kord City). Journal of Environmental Sciences, 7(1): 148-133.
[18]. Ma C., Zhang G.Y., Zhang X.C., Zhao Y.J., and Li H.Y. (2012). Application of Markov model in wetland change dynamics in Tianjin Coastal Area. China Procedia Environmental Sciences, 13: 252 – 262.
[19]. Pérez-Vega A, Mas J.F., and Ligmann-Zielinska A. (2012). Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environmental Modelling & Software, 29: 11-23.
[20]. Ghorbani, Kh. (2012). Geographically weighted regression: a method for mapping the samerainfall in Gilan province. Journal of Soil and Water, 3:752-743.
[21]. Wooldridge J.M. (2003). Introductory Econometrics: A Modern Approach. South-Western college Publishing, Mason, Ohio.
[22]. Singh V., Dubey A. (2012). Land use mapping using remote sensing & GIS techniques in Naina-Gorma Basin, Part of Rewa District. International Journal of Emerging Technology and Advanced Engineering, 2(11): 151-156
[23]. Zare Garizi, A., Bardi Sheykh, V., Saedaldein, A., and Salman Mahini, A. (2012). Application logistic regression method in modeling spatial pattern of vegetation change (Case Study: catchment of Chehel Chai of Golestan province). Journal of Geographical Space, 12 (37): 68-55.
[24]. Lu, D., and Weng, Q. (2007). A Survey of Image Classification Methods and Techniques for Improving Classification Performance. International Journal of Remote Sensing, 28(5): 823-870.
[25]. Alavipanah, S.K. (2009). Application of Remote Sensing in the Earth Sciences (Soil), University of Tehran press, Tehran.
[26]. Şatır O., and Berberoğlu S. (2012). Land Use/Cover Classification Techniques Using Optical Remotely Sensed Data in Landscape Planning, Dr. Murat Ozyavuz (Ed.), InTech, Turkey Published.
[27]. Verburg, P., Schot, P., Dijst, M., and Veldkamp, A. (2004). Land use change modelling: current practice and research priorities. GeoJournal, 61: 309-324.
[28]. Costanza R., and Rrut M. (2004). Using dynamic modeling to scope environmental problems and build consensus, GeoJourna, l61: 309–324.
[29]. Eastman, J.R., Van Fossen, M.E., and Solarzano, L.A. (2012). Transition potential modelingfor land cover change. In: Maguire, D., Goodchild, M., Batty, M. (Eds.), GIS,Spatial Analysis and Modeling. ESRI Press, Redlands, California.
[30]. Václavík, T., and Rogan, J. (2009). Identifyng trends in land Use/Land cover changes in thecontext of Post-Socialist Transformation in Central Europe. GIS Science andRemote Sensing, 49(1): 1-32.
[31]. Gontier, M., Mörtberg, U. and Balfors, B. (2009). Comparing GIS based habitat models forapplications in EIA and SEA. Environmental Impact Assessment Review, 30(1): 8-18.
[32]. Mas, J.F., and Flores, J.J. (2008). The application of artificial neural networks to the analysis of remotely sensed data (review article). International Journal of Remote Sensing, 29(3): 617-663.
[33]. Coppin, P., Jonckheere, I., Nackaerts, K. and Muys, B. (2004). Digital change detection methods in ecosystem monitoring. International Journal of Remote Sensing, 25 (9), 1565–1596.
[34]. Safyanian, A. (2009). Surveyofland use Changes in ESFAHAN city using vector change detection techniques during the years 1366 to 1377. Journal of Soil and Water Sciences, 13(49): 152-164.
[35]. Rabei’I, H., Zeyaeian, P. and Alimohamadi, A. (2004). Detecting and recovering Changes in land use and land cover in ESFAHAN city with the help of remote sensing and GIS. Geographical Research Quarterly, 84:41-54.
[36]. Gholamalifard, M., Jorabiyan Shoshtary, Sh., Hosseini Kahnoj, S.H., and Mirzaei, M. (2012). Modeling of land use changes in coastal of MAZANDARAN province using LCM in GIS. Journal of Environmental Studies, 38(4): 124-109.
[37]. Zhang G.P. (2003). Neural Networks in Business Forecasting, Idea Group Inc. 310p.
[38]. Huang W., Wang Sh, YuL., Bao Y., and Wang L. (2006). A New Computational Method of Input Selection for Stock Market Forecasting with Neural Networks. Part IV, 308–315.
[39]. Stone M., and Brooks, R.J. (1990). Continuum regression: cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression. Journal of the Royal Statistical Society, 2: 237-269.
[40]. Ghabaei Sogh, M., Mosaedi, A., Hesam, M., and Hezarjaribi, A. (2010). Assessment effect of pre-processing parameters input to artificial neural networks (ANNs) using the step by step regression and Gamma test methods in order to faster estimate daily evapotranspiration. Journal of Soil and Water, 3: 624-610.
[41]. Farahani, H.A., Rahiminezha, A., Same, L., and Immannezhad, K. (2010). A Comparison of partial least squares (PLS) and ordinary least squares (OLS) regressions in predicting of couples mental health based on their communicational patterns. Procedia Social and Behavioral Sciences, 5: 1459–1463.
[42]. Eastman, J.R. (2009(. IDRISI Taiga Guide to GIS and Image Processing. Clark-Labs, Clark University, Worcester,MA.
[43]. Eastman, J.R., (2006). IDRISI Andes. Tutorial. Clark-Labs, Clark University, Worcester,MA.
[44]. Pistocc hi, A., Lu zi L., and Napolitano P. (2002). The use of predictive modeling techniques for optimal exploitation of spatial databases: a case study in landslide hazard mapping with expert system-like methods. Environmental Geology, 41(765):1-24.
[45]. Chuvieco E., (2002). Teledetección ambiental: La observación de la Tierra desde especial. Editorial Ariel. Barcelona, Espuma.
[46]. Bishop C.M., (1995). Neural Networks for Pattern Recognition. Oxford University Press, Oxford.
[47]. Samanta, B., Bandopadhyay, S., and Ganguli, R., (2006). Comparative Evaluation of Neural Network Learning Algorithms for Ore Grade Estimation. Mathematical Geology, 38: 175-197.
[48]. Salmanmahiny, A. and Kamyab, H. (2012). Applied Remote Sensing and GIS with Idrisi.Mehrmahdis publisher. 2nd Edition.
[49]. Fan, F., Wang, Q., and Wang, Y. (2007). Land use and land cover change in Guangzhou, Chaina, from 1998 to 2003, based on land sat TM/ETM+ imagery, Sensors, 7: 1323-1342.
[50]. Fatemi, S.B., and Rezai, Y. (2012). Principles of Remot Sensing. Publication of Azadeh, Tehran, 288P.
[51]. Rosenshein, L., Scott, L., and Pratt, M. (2011). Finding a Meaningful Model, ArcUser, 40-45.
[52]. Babaei Eghdam, F., Esmaei Ouri, A., and Heidari Sariyan, V. (2011). Modeling the spatial pattern of land use SAREEN city in 1400 year using CLUE_S model. Geographical Research, 26(4): 93-116.
[53]. Bakhtiyarifar, M., Mesgari, M.S., Kaeimi, M., and Chaharghani, A. (2011). Modeling of land use change using Multi Criteria Decision Methods and GIS. Journal of Ecology, 37(58): 57-43.